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The dynamics of an ensemble of two-level atoms in a single-mode resonant laser cavity with external
pumping and a weak coherent probe is investigated. The system is represented as a perturbation to an inte-
grable system, the Jaynes-Cummings model, in which there are no losses. Using an analytical perturbation
technique, the Melnikov method, we show the presence of special homoclinic orbits, which persist under small
perturbation from the homoclinic structure present in the integrable case on codimension-one surfaces in the
parameter space. Two cases are considered: one in which we consider the equations with small relaxation
parameters and no probe and the second in which we consider the small relaxation parameters and the effects
of the probe. The persistence of homoclinic orbits for larger parameters is demonstrated through numerical
continuation using the software packageAUTO. The breakup of these homoclinic orbits is believed to be a
source of chaos in the laser system.@S1063-651X~96!02307-0#

PACS number~s!: 05.45.1b, 42.65.Sf

I. INTRODUCTION

The Maxwell-Bloch equations for single-mode laser op-
eration @1–4# invite a dynamical systems approach, espe-
cially because they contain the famous Lorenz equations as a
subsystem. Dynamical systems ideas, while not necessarily
complete from the viewpoint of physics, at least provide an
organizing principle for investigations of laser dynamics. For
example, Arecchi@4# and Weiss@5# review and evaluate the
experimental observability of some of the behavior of laser
operation that is interesting from a dynamical systems view-
point.

The dynamical systems approach we take is intended to
map out the regions in the parameter space for single-mode
laser operation where interesting dynamical behavior will
take place, provided the dynamics can indeed be described
by the Maxwell-Bloch equations. In order for these equations
to apply, we must assume the laser to be an ensemble of
two-level atoms in a single-mode resonant cavity with exter-
nal pumping. We must also assume that the sample of lasing
material in the cavity is small enough that we can neglect all
spatial effects. Finally, the Maxwell-Bloch equations ignore
quantum effects in the electric field. If we denote the com-
plex envelopes of the electric field byE, the medium polar-
izability by P , and the real-valued population inversion by
D , the Maxwell-Bloch equations read

Ė5P2«aE, ~1.1a!

Ṗ5ED2«bP, ~1.1b!

Ḋ52 1
2 ~EP*1E*P!2«g~D21!, ~1.1c!

where the overdot denotes the time derivative. Here the pa-
rameter«a represents the cavity losses, while«b and«g are
the parallel and perpendicular relaxation rates for the lasing
material in the cavity, respectively, and« is the inverse of the
coupling constant. These equations assume comparable time
scales for the processes of cavity damping«a and the relax-
ation of atomic states«b and«g.

If a small-amplitude, slightly detuned probe is injected
into the laser cavity, the Maxwell-Bloch equations become
@6,7#

Ė5P2«aE, ~1.2a!

Ṗ5~E1«deivt!D2«bP, ~1.2b!

Ḋ52
1

2
@~E1«deivt!P*1~E*1«de2 ivt!P#

2«g~D21!, ~1.2c!

where «d is the strength of the probe laser andv is the
detuning between the frequencies of the probe light and the
radiation in the resonant cavity, which is tuned to match the
atomic transition frequency. All the variables and parameters
are dimensionless; their dimensional counterparts are dis-
cussed, for instance, in@7#. An idealized experimental setup
showing the laser cavity, together with the weak coherent
probe, is depicted in Fig. 1.

The type of dynamical systems behavior we are seeking is
the persistence or breakup of homoclinic orbits as the param-
eters«a, «b, «g, and«d are varied. We find persisting ho-
moclinic orbits in two ways: by the Melnikov method, as
reviewed in @8#, and by numerical continuation using the
computer codeAUTO @9#. Our investigation yields a fairly
complete picture of the surface in the«a-«b-«g-«d param-
eter space where certain homoclinic orbits exist that are be-
lieved to be responsible for the occurrence of chaotic dynam-
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ics @10,11#. For small values of«, this surface is well
approximated by its tangent space at the origin, which is
calculated by the Melnikov method. Moreover, this surface
contains all previously discovered cases of the same type of
homoclinic orbits. Varying the parameters away from this
surface leads to bifurcations of various kinds that have been
well studied for the Lorenz system@11#. We propose a dif-
ferent bifurcation path that may be suitable for laser optics.

In Sec. II we describe the dynamics of the integrable case,
which we obtain by setting«50. In Sec. III we derive the
conditions on the parameters«a, «b, and«g for homoclinic
orbits to persist under perturbation in the case when the per-
turbation contains no probe and also map out numerically
using the codeAUTO @9# the two-dimensional surface in the
«a-«b-«g parameter space on which these homoclinic orbits
persist as«a, «b, and«g increase to finite values. The con-
tinuation method we use tracks the same homoclinic orbit as
the parameters increase along a continuous locus in param-
eter space that has two branches. Section IV reviews the
comparison with the Lorenz equations and laser experiments.
Section V treats a Smale horseshoe construction that leads to
chaotic dynamics. Section VI treats the effects of injection of
a low-intensity, slightly detuned probe laser into the original
laser cavity. The injection of the probe laser introduces two
other phases into the problem and thus raises the dimension
of the laser dynamical system from 3 to 5. The additional
degrees of freedom complicate the discussion technically,
but the basic structure of the parameter space and the fea-
tures of the bifurcations to a strange attractor are very similar
to those in the case without the probe.

II. THE INTEGRABLE CASE

A. Integrable limit and conservation laws

In the limit as« goes to zero in Eqs.~1.2!, we recover the
integrable Hamiltonian equations of the classical Jaynes-
Cummings model@12#. This integrable limit corresponds to
absence of the probe and neglect of cavity losses and relax-
ation in the medium. In this limit, the Maxwell-Bloch equa-
tions read

Ė5P, ~2.1a!

Ṗ5ED, ~2.1b!

Ḋ52 1
2 ~EP*1E*P!. ~2.1c!

These equations possess three conserved quantities: unitarity

H5 1
2 uPu21 1

2D2, ~2.2!

the interaction energy

J5
1

2i
~EP*2E*P!, ~2.3!

and the sum of the electric field energy and the excitation
energy

K5 1
2 uEu21D. ~2.4!

Eliminating the population inversionD in favor of the
energyK in Eqs.~2.1! yields the ideal complex Duffing sys-
tem

Ė5P, Ṗ5E~K2 1
2 uEu2!. ~2.5!

The unitarityH serves as the Hamiltonian for these equa-
tions, namely,

Ė52
]H

]P* , Ṗ522
]H

]E* ,

with

H5 1
2 uPu21 1

2 ~K2 1
2 uEu2!2. ~2.6!

B. Homoclinic orbits in five dimensions

In previous work@13,14#, the authors showed that there
exist homoclinic orbits in Eqs.~2.5!, which are given explic-
itly by

E52AK sech~AKt !eiu,

P522K sech~AKt !tanh~AKt !eiu, ~2.7!

whereu is a time-independent phase angle. Solutions~2.7!
are homoclinic to the equilibrium atE5P50, K.0. This
equilibrium corresponds to the absence of any cavity radia-
tion and material polarizability, with all of the atoms of the
material sample being in the completely inverted state.~Po-
larizability vanishes in this state because there is no charge
separation to form an atomic dipole moment.! The curve of
completely-inverted-state equilibria atE5P50,K.0 is con-
nected to itself by a parametrized family of two-dimensional
homoclinic tori, given by the solutions~2.7! or implicitly by

H2 1
2K

250, J50. ~2.8!

This family of homoclinic tori is shown schematically in Fig.
2. Each torus describes the locus of states undergone by the
system as the material emits light into the cavity and reab-
sorbs it in infinite time. The aim of this paper is to use this

FIG. 1. Diagram of the ring-cavity laser system with an external
probe laser and an external pump. We assume that the lasing sample
is short enough so that spatial effects can be ignored and that a
two-level description is sufficient.
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family of homoclinic tori as a framework in which to analyze
the chaotic behavior of Eqs.~1.2!.

III. THE CASE WITH NO PROBE

A. An attracting family of real subsystems

Equations~1.1!, which describe the ring-laser cavity in
the absence of the probe laser, possess a circular symmetry.
In particular, they are invariant under the transformation
~E,P!°~Eeif,Peif! for any realf. By writing Eeif andPeif
with realE andP instead of the usual complexE andP, we
find thatdf/dt50. Therefore, Eqs.~1.2! with d50 contain a
continuous family of real subsystems

Ė5P2«aE, ~3.1a!

Ṗ5E~K2 1
2E2!2«bP, ~3.1b!

K̇52«aE22«g~K2 1
2E221!, ~3.1c!

which are parametrized by the phasef. In Eqs. ~3.1! the
inversionD has been eliminated in favor of the energyK
given by Eq. ~2.4!. This continuous family of real sub-
systems is precisely the subspace of the complexE-P-K
phase space in whichJ50. Equations~1.1! imply

J̇52«~a1b!J.

Hence theJ50 subspace is attracting and is therefore the
only submanifold of importance in the long-time behavior of
the system@15#.

B. The ideal limit

When «50, theE-P dynamics is governed by a param-
etrized family of ideal Duffing oscillators. In the fullE-P-K
phase space, the pointsE5P50 with K.0 form a hyper-

bolic line of equilibria that is connected to itself by a two-
sheeted homoclinic manifold similar to that shown in Fig. 2.
This manifold is just the collection of all the pairs of sepa-
ratrices that connect the originE5P50 to itself on each
constantK slice. These manifolds are parametrized byt and
K in the homoclinic solutions~2.7! with u50 and u5p,
namely,

E562AK sech~AKt !, P572K sech~AKt !tanh~AKt !,
~3.2!

or they can be represented implicitly by the equation
H5 1

2K
2, that is,

P22KE21 1
4E450. ~3.3!

C. Stable and unstable manifolds of surviving equilibria

The lineE5P50 is invariant under the flow of Eqs.~3.1!
for «.0. Equation~3.1c! shows that this line consists of two
orbits that contract exponentially towards the equilibrium at
E5P50, K51. The stability matrix at that equilibrium is

F 2«a 1 0

1 2«b 0

0 0 2«g
G

and its eigenvalues are

l1,252
«~a1b!

2
7F S «~a2b!

2 D 211G1/2, l352«g.

~3.4!

Thus this equilibrium is a saddle for«2ab,1 and a sink for
«2ab.1. The corresponding eigenvectors are

e15F «~b2a!

2
2F S «~a2b!

2 D 211G1/2
1
0

G ,
e25F «~a2b!

2
1

1

F S «~a2b!

2 D 211G1/2
0

G , ~3.5!

e35F 00
1
G .

If « is close enough to 0, part of the skeleton provided by
the unperturbed homoclinic manifolds can be proven to per-
sist in theE-P-K phase space. Namely, any line segment
E5P50, K1<K<K2 with 0,K1,1,K2 possesses two-
dimensional stable and unstable manifolds, as shown in Fig.
3. As «→0, these two manifolds collapse smoothly onto
pieces of the two homoclinic manifolds.

FIG. 2. Sketch of the homoclinic manifold for the integrable
system. EachK level of this is a pinched two-dimensional torus
filled with orbits homoclinic to the equilibrium at~E,P,K)
5(0,0,K).
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D. Homoclinic orbits for small «

Only one pair of homoclinic orbits may survive under
perturbation of the whole unperturbed manifold, namely, a
pair of orbits homoclinic to the equilibrium at~E,P,K!
5~0,0,1!. Its survival is determined by the Melnikov method,
which is a standard method reviewed, for instance, in@8#.
This method shows that the signed distance between the un-
stable and stable manifolds of the equilibrium at~0,0,1!
along the normal to the unperturbed homoclinic manifold

n5“~H2 1
2K

2!5~2KE1 1
2E3,P,2 1

2E2!

is proportional to«M (a,b,g)1O(«2), with a positive pro-
portionality factor. Here

M ~a,b,g!5E
2`

`

^n,g&dt ~3.6!

is the Melnikov function and

g5„2aE,2bP,2aE22g~K2 1
2E221!…

is theO(«) part of the vector field~3.1!. This integral is
evaluated along either of the two unperturbed homoclinic
orbits ~3.2! with K51. Explicitly, the Melnikov function
turns out to be

M ~a,b,g!5 8
3 ~3a2b22g! ~3.7!

and so when

3a2b22g50, ~3.8!

the two branches of the unstable manifold of the equilibrium
point ~E,P,K!5~0,0,1! return to this point and form a sym-
metric pair of homoclinic loops.

E. Tracking homoclinic orbits for «5O„1…

While the Melnikov function shows where the homoclinic
orbits survive forO(«) relaxation rates, we are interested in
where ~if anywhere! these homoclinic orbits survive for
larger,O(1), relaxation rates. In order to determine this sur-
vival, we use the software packageAUTO @9# to continue the
homoclinic orbits in the parameter space fromO(«) param-
eter values to higher values. The homoclinic orbits are ap-
proximated by large period~of order 103! orbits. Periodic
orbits are found through a Hopf bifurcation of the equilib-
rium points at

~E,P,K !5F6S g

a
~12«2ab! D 1/2,6«Aag~12«2ab!,

3
g

2a
1«2S ab2

1

2
bg D G . ~3.9!

The Hopf bifurcation occurs along the locus of parameter
values given by

~«a!2@«a13«b1«g#1«b1«g2«a50. ~3.10!

The periodic orbits that emanate from these Hopf bifurca-
tions are continued~in «! to higher period orbits until the
period is large enough to approximate the homoclinic orbit.
These high period orbits are now continued in the«a-«b-«g
parameter space by continuing in«a-«b space for fixed val-
ues of«g. The starting point for each fixed«g slice is taken
for small «a and «b such that the parameters satisfy the
Melnikov function’s zeros requirement~3.7!. The continua-
tion of approximate homoclinic orbits in the parameter space
is shown as dotted lines in Fig. 4.

Figure 4 shows the locus of parameter values where ho-
moclinic orbits exist~dotted lines! and the Hopf bifurcation
locus~dashed lines! in the«a-«b plane for various values of
«g. The orbits exist as predicted by the Melnikov method
when« is small in~3.8!. This corresponds to the nearly linear
portion of the curve near the origin for each of the dotted
curves in Fig. 4. The numerical technique of tracking the
homoclinic orbits as« increases by usingAUTO ensures that
the same homoclinic orbits that exist at small« on the lower,
nearly linear branch of the dotted curves in Fig. 4 continue to
exist at larger« as we move around the dotted curves to the
upper branch in each figure. Figure 4 shows that increasing
«g decreases the extent of the curve in the parameter space
on which the homoclinic orbits exist. Increasing«g also de-
creases the extent of the dashed curve in the«a-«b plane in
Fig. 4 on which the Hopf bifurcation occurs and thus of the
region in which the spiral-sink equilibrium points become
spiral-source equilibrium points. For small values of« there
remains a gap of length23«b1 1

3«g1O(«3) between the

FIG. 3. Geometry of the perturbed stable (Ws) and unstable
(Wu) manifolds of the invariant curveE5P50 with K.0. The
stable manifoldWs is also the stable manifold of the saddle at
~E,P,K!5~0,0,1!. The intersection of the two-dimensional stable
manifold Ws with the one-dimensional unstable manifold of the
point ~E,P,K!5~0,0,1! gives orbits homoclinic to this point.
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curves defined by Eqs.~3.8! and ~3.10! for the existence of
homoclinic orbits and the onset of the Hopf bifurcation, re-
spectively.

Outside the dashed curve in Fig. 4, the trajectories tend to
spiral-sink equilibrium points, so complex dynamics is not

observed outside the dashed curve. However, inside the
dashed curve, in the region where these equilibrium points
are unstable, complex dynamics~such as chaos! does occur.
We will see in the next section that this is the parameter
region in which the Lorenz attractor occurs.

FIG. 4. The dotted line represents the locus of points in the«a-«b plane where there exist orbits homoclinic to the completely inverted
state~E,P,K!5~0,0,1! of the three-dimensional model at fixed values of«g: ~a! «g50.01, ~b! «g50.02, ~c! «g50.05, ~d! «g50.1, and~e!
«g50.226. The dashed line represents the corresponding curve of Hopf bifurcations given by formula~3.10!.
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IV. REVIEW OF THE CONNECTION WITH THE LORENZ
EQUATIONS AND LASER EXPERIMENTS

A. The Haken transformation

For parameter values near the loci shown as dotted lines
in Fig. 4, but in the parameter region where the homoclinic
orbits no longer survive, chaotic dynamics may ensue and a
strange attractor may form. Computer simulations of the
Maxwell-Bloch equations~3.1! show the existence of a
strange attractor near the parameter values~«a,«b,«g!
5~0.5,0.1,0.05!. A projection of this strange attractor is
shown in Fig. 5. Haken@16# has shown that the real
Maxwell-Bloch system~3.1! transforms into the Lorenz
equations

dX

dt
52sX1sY, ~4.1a!

dY

dt
52XZ1rX2Y, ~4.1b!

dZ

dt
5XY2bZ ~4.1c!

under the change of variables

t→
s

«a
t, E→

«a

s
X, P→

«2a2

s
Y,

D→
«2a2

s
~r2Z!, ~4.2!

with new parametersb,s,r defined by

s5
a

b
, b5

g

b
, r5

1

ab«2
.

Hence the attractor that we see in Fig. 5 is in fact the well-
known Lorenz attractor, viewed inE-P-D space.

B. Laser experiments and the Lorenz attractor

Laser experiments by Arecchi@4,17# and by Weiss and
co-workers@5,18–23# based on approximations correspond-
ing to system~3.1! have verified the Lorenz attractor descrip-
tion of single-mode laser dynamics in some parameter re-
gimes. Specifically, Arecchi@4# shows that system~3.1!
applies in single-mode laser experiments and that the Lorenz
attractor is observable when the parameters are all of the
same order of magnitude, as we assume. The perturbation
parameter« in system~3.1! corresponds to the inverse of the
coupling constantg of the laser equations in Arecchi’s math-
ematical model@4#. Hence the integrable limit we consider
as «→0 is also the strong-coupling limit, in whichg→`.
Weiss and co-workers@5,18–23# have experimentally ob-
served Lorenz attractor behavior in a single-mode laser near
the parameter ratiosa/b54.5 andg/b50.25. For each value
of «g these two ratios will define a unique point in the«a-«b
plane. In the case of«g50.02, we have«a50.36 and«b
50.08, which, not unexpectedly, lies in the region enclosed
by the dashed curve in Fig. 4~b!.

C. High-Rayleigh-number limit of the Lorenz equations

As we see in~4.2!, the «→0 limit of Eqs. ~3.1! corre-
sponds to the limit of the Lorenz equations as the Rayleigh
numberr goes to infinity. This limit has been studied from
various viewpoints in@11,15,24–28#. In particular, Robbins
@24#, Fowler and McGuiness@25#, Fowler@26#, and Sparrow
@11# analyze periodic orbits in the high-Rayleigh-number
limit using the method of averaging and conjecture the ex-
istence of a pair of homoclinic orbits. Pokrovskii@15,27#
shows the existence of these homoclinic, as well as the ex-
istence of adjacent periodic orbits, also by using the method
of averaging and Poincare´ return map techniques. Li and
Zhang@28# find formula~3.8! for the existence of homoclinic
orbits in this limit by the Melnikov method and also address
perturbations of periodic orbits of the infinite-Rayleigh-
number case by using the subharmonic Melnikov method.
The results in Fig. 4 for the Maxwell-Bloch system~3.1!
when translated to the Lorenz system~4.1! by the change of
variables in~4.2! show that the homoclinic orbits that exist in
the infinite-Rayleigh-number limit also persist forO(1) val-
ues ofr.

D. Shooting approaches to the homoclinic orbits

Computations by Kaplan and Yorke@10# have shown the
existence of a homoclinic orbit in the Lorenz equations at the
particular set of parameter values (b,s,r)5( 83 ,10,13.926),
which is equivalent to~«a,«b,«g!5~0.847,0.085,0.226! for
the Maxwell-Bloch equations. This value lies on the upper
branch of the locus of parameter values where homoclinic
orbits exist in Fig. 4~e!. A similar result on the existence of
this homoclinic orbit has been shown by Sparrow@11#.

Recently, Hastings and Troy@29,30# and Hassard and
Zhang @31# have given rigorous proofs of the existence of
these homoclinic orbits by shooting methods using precise
computer arithmetic. These homoclinic orbits are also found

FIG. 5. The strange attractor for the three-dimensional model
equations at~«a,«b,«g!5~0.5,0.1,0.05! is the usual Lorenz attrac-
tor. Its position in the parameter space is the point marked with an
3 in Fig. 4~c!.
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on the upper branch of the parameter curves in Fig. 4. We
show that the upper and lower branches of the locus of pa-
rameter values at which homoclinic orbits exist are continu-
ously connected to each other. Therefore, the homoclinic or-
bits that have been previously found by shooting methods in
the Lorenz system are in fact the same homoclinic orbits that
we have found to exist analytically in the integrable limit of
the Maxwell-Bloch equations.

V. CHAOTIC DYNAMICS

A. Poincaré return map

In order to explain the manifestation of the chaotic dy-
namics, we follow@8,10,32# in constructing a Poincare´ return
map in the vicinity of the pair of homoclinic loops and show-
ing that as the loops break, this map becomes a Smale horse-
shoe map. Since this construction is by now standard, we
only describe its properties that pertain specifically to our
problem. In particular, the construction contains several hy-
potheses that must be checked on a case-by-case basis. In our
problem, they can in fact be checked analytically and we
briefly describe how this can be done.

B. Local coordinates

We examine the dynamics by first fixing«a, «b, and«g
such that a pair of homoclinic orbits exists. Equations~3.1!
are transformed from theE-P-K coordinates intou-v-z co-
ordinates in the eigendirections~3.5! so that the point
~E,P,K!5~0,0,1! is translated to the origin and the coordinate
axes become aligned with the eigenvectors~3.5! of the lin-
earization of Eqs.~3.1! about the origin. The unstable mani-
fold of the origin is tangent to thev axis and the stable
manifold is tangent to theu-z plane. The two homoclinic
loops return to the origin tangent to thez axis. Moreover, the
symmetry of the system under the transformation (u,v,z)
°(2u,2v,z) ~which is inherited from theE-P-K coordi-
nates! forces both homoclinic loops to return to the origin
with the same sign ofz. We can choose thez axis so that this
coordinate is positive. Recalling the eigenvalues of the lin-
earized system~3.4!, we see thatl1,l3,0 andl2.0 and also
that ul1u.ul2u. We further assume thatul2u.ul3u so that we
have a strongly contracting direction alongu and a strongly
expanding direction alongv. This assumption is satisfied if
and only if «2g~a1b1g!,1, which occurs for small dissi-
pation ~«!1!.

C. Transverse cross sections to the flow in local coordinates

We can now show that system~3.1! exhibits chaotic dy-
namics. We begin by constructing a square box of size 2D
centered at the origin, shown in Fig. 6. The pair of ho-
moclinic orbits exits this box through the sides atv56D
and return to it through the top atz5D, which we denote by
P. The stable manifold of the origin intersects the top of the
box P along a curvev5V(u). For smallD, this curve is
O(D2) close to the linev50. If we denote byP1 andP2

the portions of the top of the boxP with v.V(u) and
v,V(u), respectively, then we can define the Poincare´ map
P as the map that takes the points onP1 and P2 and
evolves them in time until they return to the planez5D.

Clearly, points onP1 follow the homoclinic loop withv.0
and points onP2 follow the homoclinic loop withv,0.

D. Construction of the return map

Linear local analysis near the origin shows that the im-
ages of the surfacesP1 andP2 on the sides of the box are
wedge shaped and the flow near the two homoclinic loops
returns the two wedges to the planez5D in one of the two
ways depicted in Fig. 7. In particular, the imageP(P6) can
intersect eitherP6 or P7 ~but not both!, which depends on

FIG. 6. Cross sections to the unperturbed homoclinic orbits used
in the construction of the Poincare´ map.

FIG. 7. Geometry of the imagesP(P6) of the surfacesP6

under the Poincare´ map~a! for homoclinic orbits with no twist and
~b! for homoclinic orbits with a 180° twist. The wedge shape of the
images is found from linear analysis of Eqs.~3.1! near the origin.
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whether the stable manifold of the origin has a 180° twist
along the homoclinic loops as they travel from the sides of
the box to its top. In our case, when«!1, the geometry of
the nearby unperturbed system shows that no such twist is
possible, so that the imageP(P6) only intersectsP6. This
is in contrast with the upper branch of the«a-«b-«g surface
of homoclinic orbits, where Kaplan and Yorke@10# have
numerically observed the 180° twist.

We now fix small«b and «g and increase«a through
~«a!crit , for which the pair of homoclinic orbits exists, given
by the zeros of~3.7!. Simultaneously, the two homoclinic
loops will break in the way depicted in Fig. 8~a!, which
implies that the images of the surfacesP1 andP2 move in
the way depicted in Fig. 8~b!. This fact is shown in the fol-
lowing way. Recall that the signed distance between the one-
dimensional unstable manifold and the two-dimensional
stable manifold of the point~E,P,K!5~0,0,1! in the direction
of the outward pointing normal on the unperturbed ho-
moclinic manifold is proportional to«M (a,b,g)1O(«2)
with a positive proportionality factor. Now for«a.~«a!crit ,
we haveM (a,b,g)5 8

3 (3a2b22g).0 so that the un-
stable manifold is outside the stable manifold. Similarly, the
unstable manifold is inside the stable manifold in the case
when «a,~«a!crit . As a consequence, for«a.~«a!crit the
imagesP(P6) penetrate intoP7, while for «a,~«a!crit they
only intersectP6. As shown in@10,32# and reviewed in@8#,
P thus becomes a Smale horseshoe map for«a.~«a!crit .
This confirms the expectations that the chaotic dynamics is

present inside the region in the«a-«b-«g space enclosed by
the two-dimensional locus of parameter values where ho-
moclinic loops exist.

E. Observable chaotic dynamics

The chaotic dynamics associated with these homoclinic
orbits is robust with respect to small parameter deviations so
chaos exists in a parameter region somewhere inside of the
dotted curve in Fig. 4. However, the spiral-sink equilibrium
points~3.9! are stable for the parameter values at which these
homoclinic orbits exist. Therefore, most trajectories will not
notice the homoclinic chaos since they will tend to one of
these stable equilibrium points. When parameter values are
further changed, the equilibrium points may become unstable
and the long-term dynamics would then either lie on a
strange attractor or follow a stable limit cycle~if one exists!.
Recall that these equilibria are unstable in the parameter re-
gions enclosed by the dashed lines in Fig. 4. For instance, the
parameter values for the chaotic trajectory shown in Fig. 5
do lie within one of these regions, as shown by3 in Fig.
4~c!. The chaotic dynamics is manifested as random switch-
ing of phase points between orbits that follow the surviving
homoclinic orbits.

Figure 9 shows a sequence of two-dimensionalE-P pro-
jections of phase trajectories for the Maxwell-Bloch system
~3.1! as the parameter«a increases at constant«b and «g,
along a vertical line in the«a-«b plane. The initial phase
point is the same in each case. For«a small and below the
dotted line in Fig. 4~a!, Fig. 9~a! shows that the solution
approaches a spiral-sink equilibrium. As«a increases to
match the homoclinic orbit condition~3.8!, the solution be-
havior shows little change; see Fig. 9~b!. At higher values of
«a the trajectory approaches a limit cycle; see Fig. 9~c!. Fig-
ure 9~d! shows that this limit cycle persists as«a increases
up to the Hopf bifurcation value of condition~3.10!, the
dashed curve in Fig. 4~a!. Finally, as«a increases further, the
solution tends to the Lorenz attractor whoseE-P projection is
shown in Fig. 9~e!. We expect that this bifurcation sequence
would be observable in single-mode laser experiments, al-
though as far as we know it has not yet been seen.

The small separation of parameters in the region of this
bifurcation sequence suggests that the breakup of homoclinic
orbits plays a significant role in the formation of the attractor
itself. This has been conjectured before@10,11# in different
parameter regimes~the upper branch in Fig. 4!. However, it
seems plausible that near the lower branch the homoclinic
orbit breakup would be effective, since the separation in pa-
rameters between regular and chaotic behavior is smaller.

VI. THE CASE WITH THE PROBE

A. Five-dimensional dynamics

When the dynamics of the Maxwell-Bloch equations with
a weak probe is considered, we return to the full five-
dimensional equations~1.2!. The addition of the probe laser
breaks the circular symmetry that was present in the case
with no probe. Again, we eliminate the inversionD in favor
of the energyK in Eqs. ~1.2! to yield the five-dimensional
system~recalling that the electric field envelopeE and the
polarizability envelopeP are complex!

FIG. 8. Geometry of the perturbed system near the homoclinic
orbits at«a5~«a!crit : ~a! the breaking of the homoclinic loops and
~b! the imagesP(P6) of the surfacesP6.
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Ė5P2«aE, ~6.1a!

Ṗ5~E1«deivt!~K2 1
2 uEu2!2«bP, ~6.1b!

K̇52 1
2«d~eivtP*1e2 ivtP!2«auEu2

2«g~K2 1
2 uEu221!. ~6.1c!

This system is a nonautonomous perturbation of the inte-
grable case~2.5!.

When«50, theE-P dynamics is governed by a family of
complex Duffing oscillators~2.5! parametrized byK. In the
full E-P-K phase space, the curve of completely inverted
state equilibria atE5P50, K.0 is connected to itself by a

family of two-dimensional homoclinic tori given by~2.7!.
We recall that these homoclinic tori are represented implic-
itly by Eqs. ~2.8!.

B. Rotating coordinate frame

To study the perturbed situation, we rewrite the Maxwell-
Bloch equations in an autonomous form by transforming the
system ~6.1! to a rotating frame, lettingx5Ee2 ivt and
y5Pe2 ivt to yield

ẋ15vx21y12«ax1 , ~6.2a!

ẋ252vx11y22«ax2 , ~6.2b!

ẏ15vy21~x11«d!~K2 1
2 uxu2!2«by1 , ~6.2c!

FIG. 9. Bifurcation sequence as«a increases for fixed«b50.04 and«g50.01 in the three-dimensional model. The trajectories are
two-dimensional projections of the true trajectories:~a! «a50.01, ~b! «a50.02, ~c! «a50.05, ~d! «a50.1, and~e! «a50.2.
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ẏ252vy11x2~K2 1
2 uxu2!2«by2 , ~6.2d!

K̇52«dy12«auxu22«g~K2 1
2 uxu221!, ~6.2e!

wherex1 and x2 are the real and imaginary parts ofx, re-
spectively, and similarly fory. We apply the same transfor-
mation to the homoclinic solution of the unperturbed prob-
lem. In this rotating frame, the homoclinic solutions for the
unperturbed problem are represented as

x52AK sech~AKt !ei ~u2vt !,
~6.3!

y522K sech~AKt !tanh~AKt !ei ~u2vt !.

C. A perturbed spiral-saddle equilibrium and its stable
and unstable manifolds

While the curveE5P50 is no longer invariant under the
perturbation, there is a nearby curve that is invariant for«
close enough to zero and, furthermore, along this invariant
curve the orbits contract towards an equilibrium point that is
O(«2) close to the point (x,y,K)5(0,0,1). In other words,
the skeleton provided by the homoclinic manifolds of the
unperturbed problem still persists under small perturbation,
but in a slightly altered form. The invariant curve will still
possess stable and unstable manifolds that will collapse
smoothly onto part of the unperturbed homoclinic manifold
as«→0. Orbits for which these perturbed manifolds intersect
will be the surviving homoclinic orbits under the perturba-
tion.

D. Homoclinic orbits persisting for small «

The surviving homoclinic orbits are again computed by
the Melnikov method. However, we now use a two-
component Melnikov vector in order to compute the distance
between the stable and unstable manifolds of the spiral
saddle near (x,y,K)5(0,0,1), rather than the scalar Melni-
kov function used in the case with no probe. The correspond-
ing distance between these stable and unstable manifolds
will be zero only when both components of the Melnikov
vector have simultaneous simple zeros.

The two components of the Melnikov vector
M5(M1 ,M2)

T are given by

M1~a,b,g,d,v,u!5E
2`

`

^n1 ,g&dt, ~6.4a!

M2~a,b,g,d,v,u!5E
2`

`

^n2 ,g&dt, ~6.4b!

where

n15“~H2 1
2K

2!5~2Kx11
1
2x1

31 1
2x1x2

2,2Kx21
1
2x2

31 1
2x1

2

1x2 ,y1 ,y2 ,2
1
2 uxu2),

n25“~J!5~2y2 ,y1 ,x2 ,2x1,0!

are the two normals to the unperturbed homoclinic manifold
~2.8! and the vector

g5„2ax1 ,2ax2 ,d~K2 1
2 uxu2!2by1 ,2by2 ,2dy12auxu2

2g~K2 1
2 uxu221!…

is theO(«) part of the vector field of the equations in the
rotating frame~6.2!. The Melnikov vector is evaluated along
the unperturbed homoclinic orbits~6.3!. We evaluate the
Melnikov vector atK51, which we know to beO(«2) close
to theK coordinate of the equilibrium point. The Melnikov
vector is explicitly given by

M1~a,b,g,d,v,u!5
8

3
~3a2b22g!

1
2

3
pdv~v222!sechS pv

2 D sin~u!,

~6.5a!

M2~a,b,g,d,v,u!522pdv2 sin~u!sechS pv

2 D . ~6.5b!

The two components of the Melnikov vector simultaneously
have simple zeros at the values

3a2b22g50, u50 or p. ~6.6!

Hence homoclinic orbits will exist~for small «! when
~a,b,g! satisfy the relationship~6.6!.

FIG. 10. Bifurcation structure for finding the approximate ho-
moclinic orbit in the five-dimensional model with~a,b,g!
5~0.1,0.1,0.1!. The equilibrium at~E,P,K!5~0,0,1! undergoes a
Hopf bifurcation near«52.1. The periodic orbits that emanate from
this bifurcation approach the homoclinic orbit as«→0.
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E. Comparison with probeless case

The circular symmetry of equations~1.1! with no probe
causes an entire circle of homoclinic orbits to exist under
perturbation~when the Melnikov function has transverse ze-
ros!; however, in Eqs.~1.2! with nonzerod, this symmetry
has been broken and only one homoclinic orbit from the
entire circle will persist. In fact, since the Melnikov function
has transverse zeros for bothu50 andp, two homoclinic
orbits will persist, one for each of these two values. How-
ever, the Melnikov function only gives anO(«) result, so
these two homoclinic orbits may exist at parameter values
that areO(«2) away from each other.

F. Tracking homoclinic orbits «5O„1…

As in the case with no probe, we are interested in the
survival, at larger relaxation rates, of the homoclinic orbits
that we computed for small« by the Melnikov method.
Again we use the software packageAUTO @9# to continue
approximate homoclinic orbits in the parameter space from
O(«) relaxation rates to higher values. However, in the case
with the probe~dÞ0!, the only equilibrium point is the one
that is near (x,y,K)5(0,0,1) for small«, so we can only

trace periodic orbits that emanate from a Hopf bifurcation of
this equilibrium point. The bifurcation diagram for this equi-
librium point is shown in Fig. 10. Periodic orbits that are
created from the Hopf bifurcation split into two branches:
one that becomes the homoclinic orbit as«→0 and one that
heads toward orbits of period 2p/v as «→0. The orbits of
period 2p/v correspond to the equilibrium points in the
E-P-D frame ~periodic orbits in the rotating frame! at

uxu252~v21K !, y5 ivx,

which exist in the limit as«→0.
The approximate homoclinic orbits are continued in the

«a-«b-«g parameter space for fixed«d andv. The starting
point for each fixed«g slice is taken for small«a and «b
such that the linear relationship~6.6! is satisfied. The con-
tinuation of these orbits in«a-«b space for various values of
«g is shown in Fig. 11. When«d is relatively small~same
order of magnitude as«g! the homoclinic orbits exist at
nearly the same locations of«a-«b-«g parameter space as
when there was no probe; see Figs. 12~a! and 12~b!. As the
probe strength is increased, the homoclinic orbits only exist
for small«a and«b parameter values. The combination of a

FIG. 11. Locus of points in the«a-«b plane where there exist orbits homoclinic to the completely inverted state at~E,P,K!5~0,0,1! of
the five-dimensional model at the pumping amplitude«d50.1 and fixed values of«g: ~a! «g50.01, ~b! «g50.02, ~c! «g50.05, and~d!
«g50.1.
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large probe laser and large relaxation causes the homoclinic
orbits to no longer exist; see Figs. 12~c! and 12~d!.

As in the case with no probe, the homoclinic orbits exist
near the locations in parameter space that the Melnikov func-
tion predicted forO(«) relaxation rates, as shown by the
linear part of the curves in Figs. 11 and 12. As the parameter
values are increased, the two curves that were tangent to
each other when« was small can now be distinguished from
one another; one corresponds to theu50 branch and the
other corresponds to theu5p branch. As the parameter val-
ues are further increased, these two branches will become
tangent to each other once again. Equations~6.1! will exhibit
chaotic dynamics for parameter values that lie inside of these
curves. However, as was discussed in the case where there is
no probe, the chaos will be unobservable for parameter val-
ues very close to the parameter values where homoclinic
orbits occur. When«d is sufficiently small, strange attractors
can still be observed for values of the parameters«a, «b, and
«g near those obtained in the case with no probe. A sample
trajectory in the five-dimensional attractor is shown in Fig.
13.

In this case the chaotic dynamics manifests itself in much
the same way as for the case with no probe, that is, as a

random switching of phase points between orbits that follow
the two surviving homoclinic orbits. The construction of the
Smale horseshoe for this system proceeds in a manner simi-
lar to the analogous construction in the three-dimensional
case, but its details are somewhat different due to the spiral-
saddle nature of the underlying equilibrium point and its ho-

FIG. 12. Locus of points in the«a-«b plane where there exist orbits homoclinic to the completely inverted state of the five-dimensional
model at various values of the pumping amplitude«d and fixed values of«g: ~a! «d50.02,«g50.01; ~b! «d50.02,«g50.05; ~c! «d50.2,
«g50.01; and~d! «d50.2, «g50.05.

FIG. 13. Two-dimensional projection of a trajectory for the five-
dimensional model equations in the chaotic region at~«a,«b,«g,«d!
5~0.5,0.1,0.05,0.1!. The strange attractor is a perturbation of the
complex Lorenz attractor.
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moclinic orbits. These five-dimensional homoclinic orbits
are Šilnikov orbits. The Smale horseshoe construction near
these orbits is given in@33–36#.

Figure 14 shows a sequence of two-dimensional projec-
tions of the five-dimensional phase trajectories for the
Maxwell-Bloch system~6.1! as the parameter«a increases at
constant«b, «g, and «d along a vertical line in the«a-«b
plane. The initial phase point is the same in each case. The
bifurcation sequence is similar to the three-dimensional case
shown in Fig. 9.

VII. CONCLUSION

We have shown that the Maxwell-Bloch equations with
no probe and no dissipation terms possess orbits that are
homoclinic to the completely inverted state. With no probe
laser, these homoclinic orbits survive perturbation for certain
values of dissipation parameters, which were obtained
through a combination of the Melnikov technique and nu-
merical continuation. When these orbits break for nearby pa-
rameter values, chaos will ensue; however, there still exist
stable equilibrium points that attract the trajectories from a

given initial condition. The chaotic dynamics becomes ob-
servable when these equilibrium points become unstable, and
a strange attractor is formed. The connection between the
Maxwell-Bloch equations and the singular limit of the Lo-
renz equations for large Rayleigh number shows that this
attractor is the usual Lorenz attractor. When the effects of the
probe laser are also included in the model, the homoclinic
orbits exist in the same region of the parameter space for
small dissipation. However, as the dissipation is increased,
the location of homoclinic orbits~in the parameter space!
differs greatly from the case with no probe laser. The break-
ing of these homoclinic orbits for nearby parameter values
again causes chaotic dynamics, eventually leading to a
strange attractor.

The chaotic dynamics manifests itself as a random switch-
ing of orbits that are very close to each of the surviving
homoclinic orbits. This phenomenon may be observed as a
random ‘‘flickering’’ of the laser light. The homoclinic orbits
that have been studied in this paper may be observed in
physical situations by using a nonlinear control technique
combined with the recent advances in controlling chaotic

FIG. 14. Bifurcation sequence as«a increases for fixed«b50.04,«g50.01, and«d50.1 in the five-dimensional model. The trajectories
are two-dimensional projections of the true trajectories:~a! «a50.01, ~b! «a50.02, ~c! «a50.05, ~d! «a50.1, and~e! «a50.2.
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systems@37–41#. In particular, this approach is planned to be
presented in@42#.
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@13# D. D. Holm, G. Kovacˇič, and T. A. Wettergren, Phys. Lett. A

200, 299 ~1995!.
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256 54HOLM, KOVAČIČ, AND WETTERGREN


